Devoir de mathématiques nº9

Exercice 1 (7 points)

- 1. On appelle $U = (u_n)$ la suite définie par $u_n = 4n 10$. Quelle est la nature de la suite U? En préciser les éléments caractéristiques.
- 2. On définit maintenant la suite $V = (v_n)$ par $v_0 = 4, v_{n+1} = \frac{1}{2}v_n + 2n 1$. Vérifier que $v_1 = 1, v_2 = \frac{3}{2}$, et donner à l'aide de la calculatrice une valeur approchée de v_{10} .
- 3. On pose enfin $w_n = v_n u_n$. Calculer w_0, w_1, w_2 . Démontrer que la suite $W = (w_n)$ est géométrique, en préciser les éléments caractéristiques.
- 4. Donner l'expression de w_n , puis de v_n en fonction de n. Quelle est la limite de (v_n) ?
- 5. On pose pour tout $n: S_n = v_0 + v_1 + ... + v_n$. Donner l'expression de S_n en fonction de n.

Exercice 2 (13 points)

- 1. On appelle f la fonction définie sur $]0;+\infty[$ par $f(x)=\frac{1}{2}\left(x+\frac{2}{x}\right)$. Etudier la limite de f en 0 et en $+\infty$. Montrer que la droite Δ d'équation $y=\frac{1}{2}x$ est asymptote à la courbe de f. Préciser l'autre asymptote.
- 2. Etudier les variations de *f*, dresser son tableau de variation.
- 3. Représenter, dans un repère orthonormal d'unité 2 cm, la droite Δ , la courbe de f ainsi que la droite D d'équation y = x.
- 4. On définit, pour tout n, la suite $U = (u_n)$ par $u_0 = 2$, $u_{n+1} = \frac{1}{2} \left(u_n + \frac{2}{u_n} \right)$. Calculer u_1, u_2, u_3 . Représenter les premiers termes de la suite sur le graphique précédent. Quel semble être le sens de variation de (u_n) ? Sa limite?
- 5. Dans toute la suite, on admettra que pour tout $n: \sqrt{2} \le u_n \le 2$. Montrer alors que (u_n) est décroissante.
- 6. Montrer que, pour tout n, $u_{n+1} \sqrt{2} = \frac{\left(u_n \sqrt{2}\right)^2}{2u_n}$.
- 7. Montrer que, pour tout n, $u_{n+1} \sqrt{2} \le \frac{u_n \sqrt{2}}{2}$.
- 8. En déduire que, pour tout $n: u_n \sqrt{2} \le \frac{u_0 \sqrt{2}}{2^n}$ et la limite de (u_n) .

Remarque culturelle : cette suite s'appelle suite de Babylone. Elle était connue il y a 3000 ans par les Babyloniens, et elle a la propriété de converger très vite vers sa limite. Elle était utilisée pour donner une valeur approchée de \sqrt{a} (en prenant $u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$ bien sûr).