Classe de première 8

Vendredi 16 novembre 2007

Devoir de mathématiques n3

Exercice 1 (7 points)

ABCD est un carré direct de côté 1. On construit le triangle équilatéral direct ABE, puis le carré direct EBGF.

- 1. Compléter la figure1
- 2. Que vaut l'angle \overrightarrow{CBE} ? En déduire $\overrightarrow{BC} \cdot \overrightarrow{BE}$ puis $\overrightarrow{DA} \cdot \overrightarrow{BE}$.
- 3. Calculer *EA•EB*.
- 4. Démontrer que le triangle BCG est équilatéral. En déduire $\overrightarrow{BC} \cdot \overrightarrow{BG}$ puis $\overrightarrow{DA} \cdot \overrightarrow{EF}$.
- 5. Calculer AE•EF.
- 6. En utilisant la relation de Chasles, calculer $\overrightarrow{DE} \cdot \overrightarrow{BF}$.
- 7. En déduire que les points D, E, G sont alignés.

Exercice 2 (7 points)

Horreur, un QCM. Indiquer pour chaque question la réponse exacte (remplir le tableau sur la feuille annexe). Aucune justification n'est demandée. Toute bonne réponse rapporte 1 point. Toute réponse erronée coûte 0,5 point.

1. ABC est un triangle équilatéral de côté 4. I et H sont les milieux respectifs de [AC] et [BC]. I se projette en D sur (AH) (voir figure 2). Alors

a)
$$\overrightarrow{AB} \cdot \overrightarrow{AI} = AH \times AD$$

b)
$$\overrightarrow{AB} \cdot \overrightarrow{AI} = 8$$
 c) $\overrightarrow{AB} \cdot \overrightarrow{AI} = 4$

c)
$$\overrightarrow{AB} \cdot \overrightarrow{AI} = 4$$

2. Dans la même figure,

a)
$$\overrightarrow{DC} \cdot \overrightarrow{AB} = 0$$

b)
$$\overrightarrow{DC} \cdot \overrightarrow{DB} = 0$$
 c) $\overrightarrow{DA} \cdot \overrightarrow{BH} = 0$

c)
$$\overrightarrow{DA} \cdot \overrightarrow{BH} = 0$$

3. A, B, C sont trois points non alignés tels que $\overrightarrow{AB} \cdot \overrightarrow{AC} = 8$ et AC = 3. Alors

a)
$$\cos(\widehat{ABC}) = \frac{8}{3}$$

b)
$$AB = \frac{8}{3}$$

c)
$$\overrightarrow{AC} \cdot \overrightarrow{BC} = 1$$

4. Dans un repère orthonormal, $\overrightarrow{AB}(-4;3)$ et $\overrightarrow{CB}(-1;5)$. Alors

a)
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 6$$

b)
$$BC = 26$$

c)
$$\overrightarrow{BC} \cdot \overrightarrow{AB} = 19$$

5. Dans un repère orthonormal, la courbe d'équation $x^2 + y^2 - 10x + 4y + 23 = 0$ est un cercle

a) de rayon
$$\sqrt{23}$$

b) de rayon
$$\sqrt{6}$$

c) de centre
$$\Omega(-5;4)$$

- 6. ABC est un triangle avec AB = 4, BC = 6 et $\widehat{ABC} = 40^{\circ}$. Alors l'arrondi au centième de ACa) 3.9 b) 15,23 c) 3,91
- 7. ABC est un triangle avec AB = 3, AC = 5, BC = 6. I est le milieu de [BC]. Alors

a)
$$AI = 4$$

b)
$$AI = 2\sqrt{2}$$
 c) $AI = \sqrt{26}$

c)
$$AI = \sqrt{26}$$

Exercice 3 (6 points)

ABCD et AEFG sont deux carrés, comme sur la figure 3. Les droites (DF) et (CE) se coupent en I.

- 1. Compléter la figure. Que pensez-vous des droites (AI) et (DE) ?
- 2. On se place dans un repère orthonormal (A, \vec{i}, \vec{j}) avec \vec{i} colinéaire à \overrightarrow{AD} et de même sens, et \vec{j} colinéaire à \overrightarrow{AE} et de même sens. On suppose pour simplifier que AD=2 et AE=3. Donner les coordonnées des sommets des carrés.
- 3. Donner les coordonnées du vecteur \overrightarrow{FD} , en déduire qu'une équation de la droite (DF) est 3x + 5y - 6 = 0.
- 4. Donner une équation de la droite (*CE*).
- 5. En déduire que les coordonnées de I sont $I\left(\frac{18}{19},\frac{12}{19}\right)$ et la preuve de la conjecture du 1.

NOM:



Figure 1

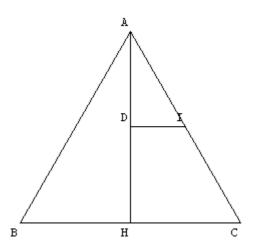


Figure 2

Question	1	2	3	4	5	6	7
Réponse							

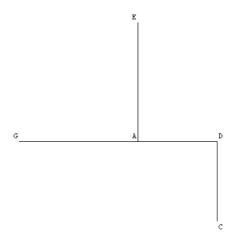


Figure 3