Exercice 1

- 1. La forme canonique s'obtient en écrivant le début d'un carré : $f(x) = x^2 4x 5 = (x-2)^2 4 5 = (x-2)^2 9. \quad \text{Les coordonnées du sommet de la courbe de } f \text{ sont } A(2\,;\,-9). \text{ La courbe est une parabole tournée vers le haut car le coefficient de } x^2 \text{ vaut 1. La fonction } f \text{ admet donc un minimum en 2, elle est décroissante sur }] \infty ; 2] \text{ et croissante sur } [2\,;\,+\infty[.$ On calcule le discriminant : $\Delta = 16 + 20 = 36$. Les solutions de l'équation f(x) = 0 sont donc $\frac{4-6}{2} = -1$ et $\frac{4+6}{2} = 5$. La fonction f est du signe du coefficient de x^2 à l'extérieur des racines, et du signe contraire entre les racines. Elle est donc positive
- 2. La fonction $g=\sqrt{f}$ est définie quand f est positive, donc sur $]-\infty$; $-1]\cup [5$; $+\infty[$. Sur ces intervalles elle a le même sens de variation que f, elle est donc décroissante sur $]-\infty$; -1[et croissante sur5 ; $+\infty[$.

sur] $-\infty$; -1] \cup [5; $+\infty$ [et négative sur [-1; 5]

- 3. La fonction $h=\frac{1}{f}$ est définie quand f n'est pas nulle, donc sur $\mathbb{R}-\{-1;5\}$. Sur chaque intervalle où f ne s'annule pas et ne change pas de signe elle a le sens de variation contraire de f. Elle est donc croissante sur $]-\infty;1[$, croissante sur]-1;2[, décroissante sur]2;5[et décroissante sur $]5;+\infty[$.
- 4. k(x) = |f(x)|. On a donc k(0) = |f(0)| = |-5| = 5, k(4) = |f(4)| = |-5| = 5 et k(-3) = |f(-3)| = |16| = 16. Pour calculer k, on garde f quand f est positive, donc sur $]-\infty$; $-1] \cup [5$; $+\infty[$ (la courbe est donc la même) et on prend -f quand f est négative, donc sur [-1;5], et la courbe y est donc symétrique par rapport à l'axe des abscisses.
- 5. l(x) = f(|x|). On a donc l(0) = f(0) = -5, l(4) = f(4) = -5 et l(-3) = f(3) = -8. La fonction l est paire et égale à f pour $x \ge 0$, sa courbe est donc confondue avec celle de f sur $[0; +\infty[$, et est symétrique par rapport à l'axe des ordonnées.

Exercice 2

- 1. $f(x) = x + \frac{1}{x} \operatorname{donc} f(b) f(a) = b + \frac{1}{b} \left(a + \frac{1}{a}\right) = b a + \frac{a b}{a \, b}$ et en factorisant b a on trouve bien $(b a) \left(1 \frac{1}{ab}\right)$
- 2. Sur $[1\,;\,+\infty[$, on a $a\geq 1,b\geq 1$ donc $ab\geq 1,\,\frac{1}{ab}\leq 1$ car la fonction inverse est décroissante sur $]0\,;\,+\infty[$, donc $1-\frac{1}{ab}$ est positif. Ainsi f(b)-f(a) est du signe de b-a et f est croissante. De même sur $]0\,;1],\,0< ab\leq 1$ donc $\frac{1}{ab}\geq 1$ et $1-\frac{1}{ab}$ est négatif. f(b)-f(a) est du signe contraire de b-a et f est décroissante.
- 3. f admet donc un minimum en 1, et ce minimum est égal à f(1)=2. Ainsi pour tout x de]0; $+\infty[$, $f(x) \ge 2$ ce qui s'écrit $x+\frac{1}{x}\ge 2$.

Exercice 3

- 1. |2x+1|=|3x-2| si et seulement si les quantités dans les valeurs absolues sont égales ou opposées, soit 2x+1=3x-2 ou 2x+1=-3x+2. En résolvant ces deux équations on obtient $S_1=\{3,\frac{1}{5}\}$
- 2. |3x-5|=2 si et seulement si 3x-5=2 ou 3x-5=-2, on résout les équations et $S_2=\{1;\frac{7}{2}\}$
- 3. $|x+4| \le 5$ représente les réels situés à une distance inférieure ou égale à 5 du point -4, donc $S_3 = [-9;1]$
- 4. |x| = x représente les réels égaux à leur valeur absolue, donc les réels positifs et $S_4 = [0; +\infty[$