Devoir de mathématiques

N°12

L'usage de la calculatrice n'est pas autorisé.

Exercice 1) (10 points)

Calculer la dérivée des fonctions suivantes (on laissera les calculs apparents et on précisera l'ensemble sur lequel chaque fonction est dérivable)

f définie par
$$f(x) = 2\sqrt{3x+1} - 5x + 3\sqrt{3}$$
, g définie par $g(x) = (3x+1)\cos(\frac{2}{3}x - \frac{\pi}{6})$

h définie par
$$h(x) = \frac{2x^2 + 3x - 1}{x^2 + x + 1}$$
, k définie par $k(y) = (\frac{3}{4}y - \frac{5}{11})^{10}$

l définie par
$$l(x) = \frac{3}{2x} - \frac{5}{4x^2} + \frac{7}{5x^3}$$
, *m* définie par $m(t) = 2\cos 2t - 3\sin 4t + 5\cos(\frac{2\pi}{3})$

n définie par
$$n(x) = \frac{1-\cos x}{3+\sin x}$$
, p définie par $p(x) = (3x^2 + 2x - 5)\sqrt{x}$

q définie par
$$q(x) = \frac{1+2\sqrt{3}}{1-2\sqrt{3}}$$
, r définie par $r(t) = -t^2 \cos t + 2t \sin t + 2\cos t$

Exercice 2) (10 points)

- 1) On cherche à déterminer une fonction f polynôme du troisième degré sachant que sa courbe \mathscr{C} dans un repère orthonormal (O, \vec{i}, \vec{j}) vérifie les deux conditions suivantes :
 - \mathscr{C} passe par O et admet en ce point une tangente de coefficient directeur -2.
 - La tangente à \mathscr{C} en son point d'abscisse 1 est parallèle à la droite d'équation y = 3x + 1
 - \mathscr{C} passe par le point A(-1;2)

En posant $f(x) = ax^3 + bx^2 + cx + d$, déterminer f.

Dans toute la suite, on pourra supposer que $f(x) = x^3 + x^2 - 2x$.

- 2) Déterminer les points d'intersection de $\mathscr C$ avec l'axe des abscisses.
- 3) Donner une équation de la tangente à \mathscr{C} en O, déterminer son point d'intersection avec \mathscr{C} .
- 4) Rechercher les abscisses des points de \mathscr{C} où la tangente est parallèle à l'axe des abscisses.
- 5) On recherche l'abscisse a d'un points de \mathscr{C} où la tangente passe par O.
 - a) Montrer que a est solution de l'équation f(a) = af'(a).
 - b) déterminer les points répondant à la question.