Classe de 1ère S₅

Corrigé du DS 18

Exercice 1)

- 1) (u_n) est définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{2}u_n + n 1 \end{cases}$ donc : $u_1 = \frac{1}{2}u_0 + 0 1 = \frac{1}{2} 1 = -\frac{1}{2}, u_2 = \frac{1}{2}u_1 + 1 1 = -\frac{1}{4}, u_3 = \frac{1}{2}u_2 + 2 1 = -\frac{1}{8} + 1 = \frac{7}{8}.$ La suite n'est ni arithmétique, ni géométrique, car les différences $u_1 u_0$ et $u_2 u_1$ sont différentes, de même que les quotients $\frac{u_1}{u_1}$ et $\frac{u_2}{u_2}$.
- 2) $v_n = u_n 2n + 6$ donc: $v_0 = u_0 + 6 = 7, v_1 = u_1 - 2 + 6 = \frac{7}{2}, v_2 = u_2 - 4 + 6 = \frac{7}{4}, v_3 = u_3 - 6 + 6 = \frac{7}{8}.$
- 3) Pour tout entier n, on a $v_{n+1} = u_{n+1} 2(n+1) + 6$ $= \frac{1}{2}u_n + n 1 2n 2 + 6$ $= \frac{1}{2}u_n n + 3$ $= \frac{1}{2}(u_n 2n + 6)$ $= \frac{1}{2}v_n$

La suite (v_n) est donc géométrique de raison $q = \frac{1}{2}$.

- 4) On a pour tout n, $v_n = v_0 q^n = \frac{7}{2^n}$. D'autre part, on a $v_n = u_n 2n + 6$ donc $u_n = v_n + 2n 6$, donc pour tout n $u_n = \frac{7}{2^n} + 2n 6$.
- 5) La suite (v_n) , géométrique de raison strictement comprise entre -1 et 1, a pour limite 0. La suite (w_n) définie par $w_n = 2n 6$, arithmétique de raison positive, a pour limite $+\infty$. Il en résulte que la suite (u_n) a pour limite $+\infty$ par somme.
- 6) S, somme des termes consécutifs d'une suite arithmétique, est égal par théorème à :

$$S = v_0 \frac{1 - q^{n+1}}{1 - q} = 7 \frac{1 - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}} = 7 \times 2 \left(1 - \frac{1}{2^{n+1}}\right) = 14 - \frac{7}{2^n}.$$

7) D'autre part, la somme $w_0 + w_1 + ... + w_n$ est égale à $\frac{w_0 + w_n}{2}(n+1) = (n-6)(n+1)$. En ajoutant les résultats précédents, on trouve que $S' = 14 - \frac{7}{2^n} + (n-6)(n+1)$.

Exercice 2)

La fonction f est définie sur]0; +\infty[par $f(x) = \frac{x^2 + x + 4}{x}$

1) Etude de la limite de f en 0 : $\lim_{\substack{x \to 0 \\ x > 0}} x^2 + x + 4 = 4$, $\lim_{\substack{x \to 0 \\ x > 0}} x = 0^+$ donc $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty$.

On peut en conclure que l'axe des ordonnées est asymptote à \mathscr{C} .

Etude en $+\infty$: pour tout x > 0 on a $f(x) = \frac{x^2(1 + \frac{1}{x} + \frac{4}{x^2})}{x} = x(1 + \frac{1}{x} + \frac{4}{x^2})$. $\lim_{x \to +\infty} \frac{1}{x} = 0 \text{ donc } \lim_{x \to +\infty} (1 + \frac{1}{x} + \frac{4}{x^2}) = 1 \text{ et } \lim_{x \to +\infty} x(1 + \frac{1}{x} + \frac{4}{x^2}) = +\infty$

2) Calculons l'écart $h(x) = f(x) - (x+1) = \frac{x^2 + x + 4}{x} - \frac{x(x+1)}{x} = \frac{4}{x}$.

Comme $\lim_{x\to +\infty} \frac{4}{x} = 0$, on peut en conclure que Δ est asymptote à \mathscr{C} . Comme de plus h(x) est toujours positif (car x est strictement positif), \mathscr{C} est au dessus de Δ .

3) f est dérivable sur]0; $+\infty[$ car c'est un quotient rationnel. Pour tout x positif, on a

$$f'(x) = \frac{(2x+1)x - (x^2+x+4)}{x^2} = \frac{x^2-4}{x^2}.$$

f'(x) est donc du signe de $x^2 - 4$, c'est à dire, x étant positif, que f'(x) est positif sur $]2; +\infty[$ et négatif sur]0; 2[. f est donc strictement croissante sur $[2; +\infty[$ et strictement décroissante sur]0; 2[. On a le tableau

X	0		2		$+\infty$	
f'(x)		_	0	+		
f	+8	7	5	7	+∞	

- 4) Laissé au lecteur (regardez votre calculatrice)
- 5) L'équation d'une tangente est y = f'(a)(x-a) + f(a). Il n'y a plus qu'à substituer. T a donc pour équation :

$$y = \frac{a^2 - 4}{a^2}(x - a) + \frac{a^2 + a + 4}{a} \iff y = \frac{a^2 - 4}{a^2}x + \frac{-a(a^2 - 4)}{a^2} + \frac{a^2 + a + 4}{a} \iff y = \frac{a^2 - 4}{a^2}x + \frac{a + 8}{a}$$

6) J est le point de T situé sur l'axe des ordonnées ; Son abscisse est nulle, et son ordonnée est égale à $\frac{a+8}{a}$. On a donc $J\left(0;\frac{a+8}{a}\right)$.

K est le point d'intersection de T et Δ . Pour trouver ses coordonnées, on résout le système

$$\begin{cases} y = x + 1 \\ y = \frac{a^2 - 4}{a^2}x + \frac{a + 8}{a} \Leftrightarrow \begin{cases} y = x + 1 \\ x + 1 = \frac{a^2 - 4}{a^2}x + \frac{a + 8}{a} \end{cases} \Leftrightarrow \begin{cases} y = x + 1 \\ \left(1 - \frac{a^2 - 4}{a^2}\right)x = \frac{a + 8}{a} - 1 \end{cases} \Leftrightarrow \begin{cases} y = x + 1 \\ \frac{4}{a^2}x = \frac{8}{a} \end{cases}$$

On a donc $K\left(\frac{a}{2}; \frac{a}{2}+1\right)$

Le triangle IJK a pour base IJ et pour hauteur l'abscisse de K (puisque (IJ) est l'axe des ordonnées). On connaît l'abscisse de K, et $IJ = \frac{a+8}{a} - 1 = \frac{8}{a}$. L'aire de IJK vaut donc

 $A = \frac{1}{2} \frac{8}{a} \frac{a}{2} = 2$. Elle est bien indépendante de a.