Devoir surveillé de mathématiques n°2

Exercice 1: d'après bac ES, Antilles Guyane 2010, 5 points

Le tableau suivant donne l'évolution du chiffre d'affaires du commerce équitable en France, exprimé en millions d'euros.

Année	2001	2002	2003	2004	2005	2006	2007	2008
Rang de l'année x_i	1	2	3	4	5	6	7	8
Chiffre d'affaires du commerce équitable en millions d'euros y_i	12	21	37	70	120	166	210	256

(Source : M. H. leader du commerce équitable mondial)

- a. En 2007, le commerce de détail en France a généré un chiffre d'affaires de 447 milliards d'euros. (Source : INSEE). En 2007, quelle est la part du chiffre d'affaires du commerce équitable par rapport à celui du commerce de détail ? (on donnera le résultat en pourcentage arrondi à 0,001 %).
 - b. Calculer le pourcentage d'augmentation du chiffre d'affaires du commerce équitable en France entre 2005 et 2008 (on donnera le résultat en pourcentage arrondi à 1 %).

2. Ajustement affine

- a. Représenter le nuage de points $M_i(x_i, y_i)$, $1 \le i \le 8$ associé à la série statistique dans un repère orthogonal du plan (on prendra 1 cm pour une année en abscisse et 1 cm pour 20 millions d'euros en ordonnée ; l'origine du repère sera prise dans le coin gauche de la feuille de papier millimétré).
- b. On appelle G_1 le point moyen des quatre points M_1, M_2, M_3, M_4 et G_2 le point moyen des quatre points M_5, M_6, M_7, M_8 . Calculer les coordonnées de G_1 et G_2 , puis, déterminer une équation de la droite (G_1G_2) . Tracer la droite (G_1G_2) dans le repère précédent.
- c. En utilisant cet ajustement affine, à partir de quelle année peut-on prévoir que le chiffre d'affaires du commerce équitable en France dépassera le double de celui de 2007 ?

EXERCICE 2, bac ES, Polynésie 2003, 8 points

Partie A

Le tableau suivant donne le taux de prélèvement obligatoire en France exprimé en points de PIB (produit intérieur brut).

Année	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Rang de l'année x_i	0	1	2	3	4	5	6	7	8	9
Taux t_i	42,7	42,9	43,4	43,7	44,8	44,9	44,9	45,7	44,7	44,2

Source budget

Le nuage de points associe à la série (x_i,t_i) présentant des écarts à peu près réguliers de part et d'autre de sa droite d'ajustement, on effectue un lissage par la méthode des moyennes mobiles d'ordre 3 en remplaçant le taux ti par la moyenne $z_i = \frac{t_{i-1} + t_i + t_{i+1}}{3}$. Par exemple, $z_1 = \frac{t_0 + t_1 + t_2}{3} = 43$

1. Compléter après l'avoir reproduit le tableau suivant (les valeurs seront arrondies à 0,1) et compléter le nuage de points sur la figure donnée en annexe.

Rang de l'année x_i	1	2	3	4	5	6	7	8
Moyenne mobile z_i	43	43,3		44,5			45,1	44,9

2. Écrire une équation de la droite d'ajustement affine D de z en x par la méthode des moindres carrés (les coefficients seront arrondis à 0,01). Tracer D sur la figure fournie en annexe.

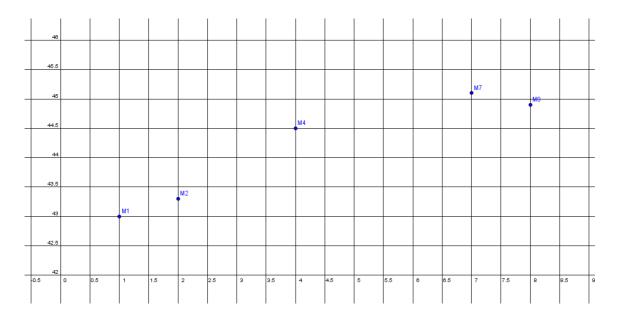
Partie B

L'allure du nuage permet d'envisager un autre ajustement correspondant à la parabole P d'équation $y = -0.0656x^2 + 0.91x + 42$

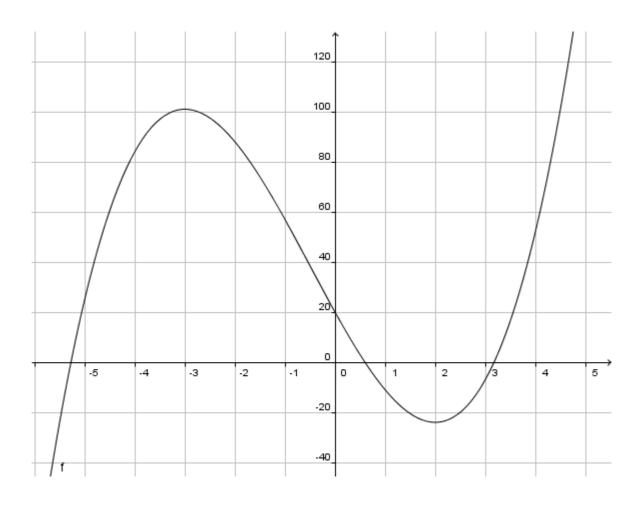
1. Tracer la parabole P sur la figure fournie en annexe en utilisant le tableau suivant. On prendra 45,2 comme valeur approchée de l'ordonnée du sommet de .

x_i	1	2	3	4	5	6	7	8
y_i	42,8	43,6	44,1	44,6	44,9	45,1	45,2	45,1

- 2. On se propose d'étudier pour lequel des deux modèles on obtient le meilleur ajustement. Pour cela, on calcule les sommes des carrés des écarts entre les valeurs z_i et les valeurs données par le modèle. On appelle S_P et S_D les sommes associées respectivement à la parabole P et à la droite D.
 - a. Compléter après l'avoir reproduit le tableau suivant. Les valeurs sont données à 0,01 près.


x_i	1	2	3	4	5	6	7	8
$(z_i - y_i)^2$	0,04	0,09		0,01			0,01	0,04

- b. Calculer $S_P = \sum_{i=1}^8 (z_i y_i)^2 = (z_1 y_1)^2 + (z_2 y_2)^2 + \dots + (z_8 y_8)^2$
- c. Pour le modèle correspondant à la droite D on donne $S_D=0.8$. Quel est le modèle qui donne le meilleur ajustement ?
- 3. En utilisant le modèle associé à la parabole P :
 - a. Calculer y_9 (on donnera une valeur arrondie à 10^{-2}).
 - b. Cette valeur étant une estimation de la moyenne mobile z_9 , en déduire une estimation t_{10} du taux de prélèvement obligatoire en 2002.


Exercice 3:7 points

La courbe donnée en annexe est celle d'une fonction f définie sur \mathbf{R} .

- 1. Donner les valeurs de f(0), f'(-3), f'(2) (on justifiera sa réponse).
- 2. Sachant que $f(x) = ax^3 + bx^2 + cx + d$, où a, b, c, d sont quatre constantes, calculer la dérivée f' de f. Quelles équations peut-on écrire avec la question 1 ?
- 3. Sachant en plus que f'(0) = -36, déterminer a, b, c, d.
- 4. On prend maintenant $f(x) = 2x^3 + 3x^2 36x + 20$. Étudier les variations de f, dresser son tableau de variations.
- 5. Déterminer une primitive F de f. À l'aide de la courbe, indiquer les variations de F.

Exercice 2

Exercice 3

NOM: